info presentación miembros líneas investigación publicaciones investigación tesis docencia

[Articulos Revista] [Articulos Congreso] [Reports] [Libros] [Capitulos Libro] [Todo] [Resumen]


Autores
Categoria WoS
  • Engineering, Multidisciplinary - Q1 - - 21/85
  • Computer Science, Interdisciplinary Applications - Q2 - - 42/102
  • Mathematics, Interdisciplinary Applications - Q2 - - 27/99
  • Mechanics - Q2 - - 58/137
Area
Titulo: Using Genetic Algorithms to improve Support Vector Regression in the analysis of Atomic spectra of Lubricant Oils
Tipo: revista internacional
Fecha: 5,2016
Revista: Engineering Computations
JCR Journal; Impact Factor: 1.495
SCIMago SJR:
Volumen: 33(4)
Paginas: 995-1005
ISSN: 0264-4401
Editorial: Emerald Group Publishing Limited
Bingley (UK)
doi: 10.1108/EC-03-2015-0062

Abstract:

To assess the quality of commercial lubricant oils a spectroscopic method was used in combination with multivariate regression techniques like multivariate multiple regression (MLR), Principal Components Regression (PCR) or Support Vector Machines for Regression,(SVR). The rationale behind the use of SVR was the fuzzy characteristics of the signal and its inherent ability to find nonlinear, global solutions in highly complex dimensional input spaces. Thus, SVR allows extracting useful information from calibration samples that makes it possible to characterize physical-chemical properties of the lubricant oils. The use of Genetic Algorithms coupled to SVR was considered in order to reduce the time needed to find the optimal parameters required to get a suitable prediction model.

SABIA
    .: SABIA :.  Sistemas Adaptativos y Bioinspirados en Inteligencia Artificial