info presentación miembros líneas investigación publicaciones investigación tesis docencia

[Articulos Revista] [Articulos Congreso] [Reports] [Libros] [Capitulos Libro] [Todo] [Resumen]


Autores
Categoria WoS
  • Multidisciplinary Sciences - Q2 - T1 - 16/55
Area
Titulo: Hybrid model based on Genetic Algorithms and SVM applied to variable selection within fruit juice classification
Tipo: revista internacional
Fecha: 12,2013
Revista: The Scientific World Journal. Issue: Recent Advances on Bioinspired Computation
JCR Journal; Impact Factor: 1.219
SCIMago SJR: 0.510
Citas ISI: 1 Citas Scopus: 1 Citas Google Scholar: 2
Volumen: 2013. ID 982438
Paginas: 1-13
ISSN: 1537-744X
Editorial: Hindawi Publishing Corporation
EE.UU.
doi: http://dx.doi.org/10.1155/2013/982438
Pubmed ID: 24453933

Abstract:

Given the background of the use of Neural Networks in problems of apple juice classification, this paper is aimed at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA), the most representative variables for a specific classification problem can be selected.

SABIA
    .: SABIA :.  Sistemas Adaptativos y Bioinspirados en Inteligencia Artificial