info presentación miembros líneas investigación publicaciones investigación tesis docencia

[Articulos Revista] [Articulos Congreso] [Reports] [Libros] [Capitulos Libro] [Todo] [Resumen]

Categoria WoS
  • Genetic Algorithms
Titulo: Hybrid two-population genetic algorithm
Tipo: congreso internacional
Congreso: 7th Fuzzy International Conference on Computational Intelligence
Fecha: 1-3/10/2001
Lugar celebracion: Dortmund (Alemania)
Paginas: 464-470
ISSN: 0302-9743
ISBN: 3-540-42732-5
Libro: Computational Intelligence: Theory And Applications, Proceedings 2206
Editorial: Springer-Verlag Berlin


Genetic Algorithms are non-deterministic, stochastic-search adaptive methods which use the theories of natural evolution and selection in order to solve a problem within a complex range of possible solutions. The aim is to control the distribution of the search space by incorporating an exhaustive method in order to maintain a constant evolution of the population. The main goal is that of redesigning the algorithm in order to add to the classic genetic algorithm method those characteristics which favour exhaustive search methods. The method explained guarantees the achievement of reasonably satisfactory solutions in short time-spans and in a deterministic way, which entails that successive repetitions of the algorithm will achieve the same solutions in almost constant time-spans. We are, therefore, dealing with an evolutionary technique which makes the most of the characteristics of genetic algorithms and exhaustive methods.

    .: SABIA :.  Sistemas Adaptativos y Bioinspirados en Inteligencia Artificial