|
Genetic Algorithms are non-deterministic, stochastic-search adaptive methods wich use the theories of natural evolution and selection in order to solve a problem within a complex range of possible solutions. The aim is to control the distribution of the search space by incorporating an exhaustive method in order to maintain a constant evolution of the population.The main goal is that of redesigning the algorithm in order to add to the classic genetic algorithm method those characteristics wich favour exhaustive search methods. The method explained guarantees the achievment of reasonably satisfactory solutions in short time-spans and in a deterministic way, wich entalis that successive repetitions of the algorithm will achieve the same solutions in almost constant time-spans. We are, therefore, dealing with an evolutionary technique wich makes the most of the characteristics of genetic algorithms and exhaustive methods.
|