- 1
-
C. Aldrich and J. S. J. van Deventer.
Comparison of different artificial neural nets for the detection and
location of gross errors in process systems.
Industrial & Engineering Chemistry Research, 34(1):216-224,
1995.
- 2
-
C. M. Bishop.
Neural Networks for Pattern Recognition.
Oxford University Press, USA, 1995.
- 3
-
C. M. Bishop.
Pattern recognition and machine learning.
Springer, 2006.
(Online service).
- 4
-
G. J. Bowden, G. C. Dandy, and H. R. Maier.
Data transformation for neural network models in water resources
applications.
Journal of Hydroinformatics, 5(4):245-258, 2003.
- 5
-
M. Brown and C. Harris.
Neurofuzzy adaptive modelling and control.
Prentice Hall, 1995.
- 6
-
Y. Chauvin and D. E. Rumelhart.
Backpropagation: Theory, Architectures, and Applications.
Lawrence Erlbaum Associates, 1995.
- 7
-
J. Faraway and C. Chatfield.
Time series forecasting with neural networks: a comparative study
using the air line data.
Journal of the Royal Statistical Society: Series C: Applied
Statistics, 47(2):231-250, 1998.
- 8
-
J. A. Freeman and D. M. Skapura.
Neural Networks: Algorithms, Applications, and Programming
Techniques.
Addison-Wesley, 1991.
- 9
-
R. González-García, R. Rico Martínez, and I. G. Kevrekidis.
Identification of distributed parameter systems: A neural net based
approach.
Computers and Chemical Engineering, 22:965-968, 1998.
- 10
-
S. Haykin.
Neural Networks: A Comprehensive Foundation.
Prentice Hall, NJ, USA, 2008.
- 11
-
J. R. Hilera and V. J. Martinez.
Redes neuronales artificiales. Fundamentos, modelos y
aplicaciones.
Addison-Wesley Iberoamericana S.A, Madrid, 1995.
- 12
-
J. C. Hoskins and D. M. Himmelblau.
Process control via artificial neural networks and reinforcement
learning.
Computers & chemical engineering, 16(4):241-251, 1992.
- 13
-
T. Kohonen.
Self-organization and associative memory.
Springer Verlag, New York, 1989.
- 14
-
C. T. Lin and C. S. G. Lee.
Neural fuzzy systems: a neuro-fuzzy synergism to intelligent
systems.
Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1996.
- 15
-
C. G. Looney.
Pattern recognition using neural networks: theory and algorithms
for engineers and scientists.
Oxford University Press, Inc. New York, NY, USA, 1997.
- 16
-
W. S. McCulloch and W. Pitts.
A logical calculus of the ideas immanent in nervous activity.
Bulletin of Mathematical Biology, 5(4):115-133, 1943.
- 17
-
K. Meert and M. Rijckaert.
Intelligent modelling in the chemical process industry with neural
networks: a case study.
Computers and Chemical Engineering, 22:587-593, 1998.
- 18
-
K. S. Narendra, M. J. Feiler, and Z. Tian.
Control of complex systems using neural networks.
Modeling and Control of Complex Systems, 2008.
- 19
-
C. A. O. Nascimento, R. Giudici, and R. Guardani.
Neural network based approach for optimization of industrial chemical
processes.
Computers and Chemical Engineering, 24(9-10):2303-2314, 2000.
- 20
-
Alejandro Pazos.
Redes de neuronas artificiales y algoritmos genéticos.
Servicio de Publicaciones Universidade da Coruña, 1996.
- 21
-
B. A. Pearlmutter.
Dynamic recurrent neural networks.
Technical report, Technical Report CMU-CS. School of Computer
Science, Carnegie Mellon University, 1990., 1990.
- 22
-
I. Rivals and L. Personnaz.
Nonlinear internal model control using neural networks: application
to processes with delay and design issues.
IEEE Transactions on Neural Networks, 11(1):80-90, 2000.
- 23
-
J. J. Shi.
Reducing prediction error by transforming input data for neural
networks.
Journal of Computing in Civil Engineering, 14:109, 2000.
- 24
-
P. D. Wasserman.
Neural computing: theory and practice.
Van Nostrand Reinhold Co. New York, NY, USA, 1989.
- 25
-
N. Wiener.
God and Golem: a Comment on Certain Points where Cybernetics
Impinges on Religion.
The MIT Press, 1964.
Marcos Gestal
2009-12-04